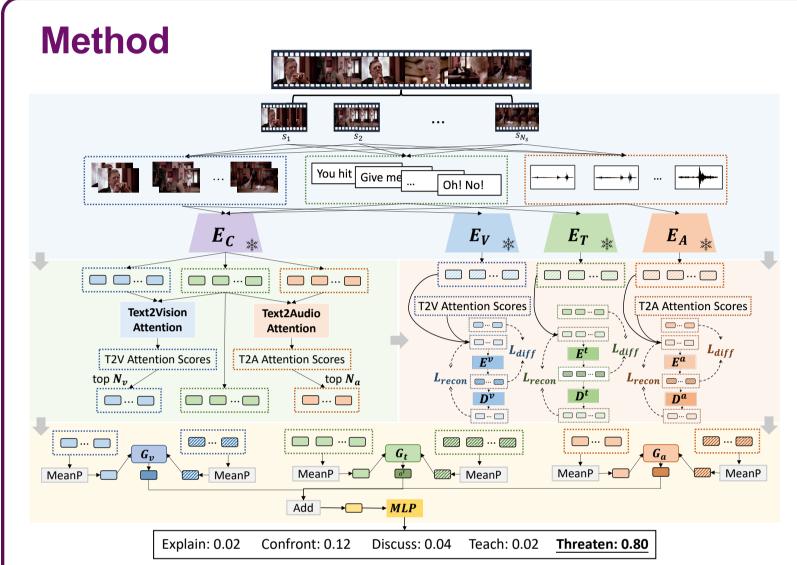

## Text-Guided Nonverbal Enhancement based on Modality-Invariant and -Specific Representations for Video Speaking Style Recognition


Beibei Zhang, Tongwei Ren, Gangshan Wu

State Key Laboratory for Novel Software Technology, Nanjing University

## Introduction

**Video speaking style recognition (VSSR)** aims to classify different types of conversations in videos, which is a fine-grained video understanding task. We propose a text-guided nonverbal enhancement method, **TNvE**, which is composed of a text-guided nonverbal representation selection module and a modality-invariant and -specific representation decoupling module, significantly improving the performance of VSSR and achieves a new state-of-the-art.

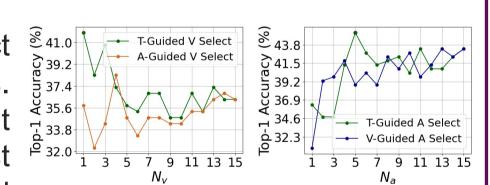




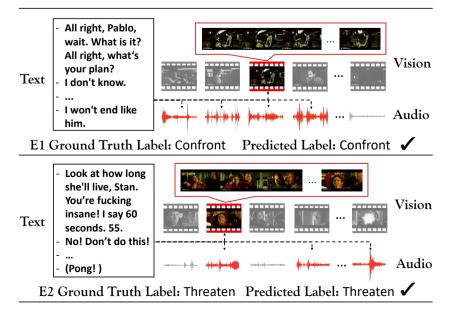
There are four main steps in TNvE: 1) Firstly the input video is segmented into multiple shots, from which modality-invariant and -specific multimodal representations are extracted; 2) A limited number of critical nonverbal representations are selected with the guide of text in the modality-invariant embedding space. And invariant and specific representations of selected shots are preserved; 3) After that, a representation decoupling module is applied to minimize redundancy between modality invariant and -specific representations; and 4) Finally invariant and specific representations of the same modality are adaptively fused and all multimodal representations are then aggregated to predict the speaking style.

## **Experiments**

**Dataset: LVU-VSSR, LVU-VSRR** 


**Metrics:** Accuracy, F1-score, Precision and Recall

Comparison with the SOTA: TNvE is superior to all VSSR methods in all metrics.


| Method                             | Acc  | F1   | P    | R    | WF1  | WP   |  |
|------------------------------------|------|------|------|------|------|------|--|
| Unimodal                           |      |      |      |      |      |      |  |
| ObjTrans(Wu and Krahenbuhl 2021)   | 40.3 | 35.7 | 36.2 | 36.4 | 39.1 | 38.7 |  |
| ViS4mer (Islam and Bertasius 2022) | 38.3 | 32.9 | 35.3 | 34.3 | 36.3 | 37.2 |  |
| S5 (Wang et al. 2023b)             | 42.1 | -    | -    | -    | -    | -    |  |
| Multimodal                         |      |      |      |      |      |      |  |
| TFN (Zadeh et al. 2017)            | 30.8 | 20.1 | 18.6 | 24.1 | 25.8 | 24.1 |  |
| MulT (Tsai et al. 2019)            | 46.8 | 40.2 | 43.0 | 42.7 | 43.7 | 44.8 |  |
| Bert-MAG (Rahman et al. 2020a)     | 44.8 | 39.9 | 45.8 | 42.8 | 40.8 | 46.4 |  |
| LF-VILA (Sun et al. 2022)          | 40.3 | 31.9 | 31.1 | 34.1 | 37.6 | 36.6 |  |
| DMD (Li, Wang, and Cui 2023)       | 40.3 | 26.7 | 25.1 | 32.5 | 34.0 | 32.8 |  |
| Movie2Scenes (Chen et al. 2023)    | 42.2 | -    | -    | -    | -    | -    |  |
| LMP (Argaw et al. 2023)            | 44.4 | -    | -    | -    | -    | -    |  |
| MMSF (Zhang et al. 2023)           | 50.2 | 45.0 | 48.0 | 44.5 | 49.1 | 49.5 |  |
| MA-LLM (He et al. 2024)            | 41.2 | 36.4 | 40.4 | 38.1 | 39.0 | 42.4 |  |
| LSSD (Singh et al. 2024)           | 50.8 | -    | -    | -    | -    | -    |  |
| TNvE (Ours)                        |      | 51.7 | 56.8 | 53.3 | 54.8 | 57.9 |  |

Ablation Study: We conduct multiple ablation experiments. The results demonstrate that text-guided selection can boost VSSR performance and representation decoupling is necessary for comprehensive multimodal understanding.

|          | a                  | t | w/o TNvRS |      |          |      |      | w/ TNvRS |      |      |      |
|----------|--------------------|---|-----------|------|----------|------|------|----------|------|------|------|
| v        |                    |   | Acc       |      | R        | W    | F1   | I        | Acc  | R    | WF1  |
| 1        |                    |   | 36.3      | 30.9 |          | 34.2 |      | 4        | 1.8  | 34.7 | 38.4 |
|          | 1                  |   | 43.3      | 3    | 9.7      | 43   | .0   | 4        | 5.3  | 39.1 | 43.1 |
|          |                    | 1 | 50.3      | 47.4 |          | 48   | 48.6 |          | 50.3 | 47.4 | 48.6 |
| ✓        | 1                  |   | 41.3      | 3    | 7.8      | 40   | .7   | 3        | 37.8 | 31.4 | 34.9 |
| ✓        |                    | ✓ | 48.3      | 45.5 |          | 47   | .3   | 51.2     |      | 49.2 | 49.7 |
|          | 1                  | 1 | 50.3      | 4    | 7.0   50 |      | .2   | 50.8     |      | 49.6 | 49.1 |
| ✓        | 1                  | ✓ | 47.3      | 4    | 5.5 46   |      | 8.8  | 54.2     |      | 53.4 | 52.8 |
|          |                    |   |           |      |          |      |      |          |      |      |      |
| M-I      | M-I M-S Diff Recon |   |           | Fus  | ion      | Acc  |      | F1       | WF1  | WP   |      |
| ✓        | ✓                  |   |           |      | - 54.2   |      | 2    | 51.4     | 52.8 | 54.3 |      |
|          | ✓                  |   |           |      | - 50.3   |      | 3    | 41.9     | 46.7 | 54.7 |      |
| 1        | ✓                  |   |           | A    |          | dd   | 53.2 |          | 47.5 | 52.0 | 53.3 |
| ✓        | ✓                  |   | /         |      | A        | dd   | 54.2 |          | 49.7 | 52.9 | 57.3 |
| ✓        | ✓                  |   | / /       | A    |          | dd   | 55.7 |          | 52.0 | 54.5 | 55.0 |
| <b>√</b> | 1                  | , | / /       | Cor  |          | ıcat | 52.2 |          | 47.7 | 51.4 | 53.2 |
| <b>✓</b> | ✓                  | • | / /       | •    | Ga       | ate  | 56.  | 7        | 51.7 | 54.8 | 57.9 |



Qualitative Analysis: TNvE can effectively leverage text to select critical nonverbal cues to enhance the recognition accuracy of VSSR.





